Saturday, 21 January 2017

Wie Zu Do Zentriert Moving Average In Excel

Moving Average Dieses Beispiel lehrt, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen. Eine Bewegung wird verwendet, um Unregelmäßigkeiten (Spitzen und Täler) zu glätten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wählen Sie Verschiebender Durchschnitt aus, und klicken Sie auf OK. 4. Klicken Sie im Feld Eingabebereich auf den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der letzten 5 Datenpunkte und der aktuelle Datenpunkt. Als Ergebnis werden Spitzen und Täler geglättet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da nicht genügend frühere Datenpunkte vorhanden sind. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Spitzen und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte zu den eigentlichen Datenpunkten. David, Ja, MapReduce soll auf einer großen Datenmenge arbeiten. Und die Idee ist, dass im Allgemeinen die Karte und reduzieren Funktionen sollte nicht kümmern, wie viele Mapper oder wie viele Reduzierer gibt es, die nur Optimierung ist. Wenn Sie sorgfältig über den Algorithmus ich gepostet denken, können Sie sehen, dass es doesn39t Angelegenheit, welche Mapper bekommt, welche Teile der Daten. Jeder Eingabesatz ist für jede reduzierte Operation verfügbar, die es benötigt. Ndash Joe K 18. September um 22:30 Im besten Fall meines Verständnisses gleitende Durchschnitt ist nicht schön Karten MapReduce-Paradigma, da seine Berechnung im Wesentlichen Schiebefenster über sortierte Daten ist, während MR Verarbeitung von nicht geschnittenen Bereichen von sortierten Daten. Lösung, die ich sehe, ist wie folgt: a) Um benutzerdefinierte Partitionierer zu implementieren, um zwei verschiedene Partitionen in zwei Durchläufen zu machen. In jedem Lauf erhalten Ihre Reduzierer verschiedene Bereiche der Daten und berechnen gleitenden Durchschnitt, wo passend, werde ich versuchen zu illustrieren: Im ersten Lauf Daten für Reduzierer sollte: R1: Q1, Q2, Q3, Q4 R2: Q5, Q6, Q7, Q8 . Hier werden Sie gleitenden Durchschnitt für einige Qs cacluate. Im nächsten Lauf sollten Ihre Reduzierer Daten wie erhalten: R1: Q1. Q6 R2: Q6. Q10 R3: Q10..Q14 Und caclulate den Rest der gleitenden Durchschnitte. Dann müssen Sie Ergebnisse zu aggregieren. Idee der benutzerdefinierten Partitionierer, dass es zwei Modi der Operation haben wird - jedes Mal in gleiche Bereiche, aber mit einigen Verschiebung. In einem Pseudocode sieht es so aus. Partition (keySHIFT) (MAXKEYnumOfPartitions) Dabei gilt: SHIFT wird aus der Konfiguration übernommen. MAXKEY-Maximalwert der Taste. Ich nehme zur Vereinfachung an, dass sie mit Null beginnen. RecordReader, IMHO ist keine Lösung, da es auf bestimmte Split beschränkt ist und kann nicht über Splits Grenze gleiten. Eine weitere Lösung wäre, um benutzerdefinierte Logik der Aufteilung der Eingangsdaten (es ist Teil der InputFormat) zu implementieren. Es kann getan werden, um 2 verschiedene Folien, ähnlich wie die Partitionierung zu tun. Beantwortet Sep 17 12 at 8:59


No comments:

Post a Comment